APPENDIX
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We’ve got a problem here, the coefficient on the last line m # 1. No, worries. We can

still save the argument by recognizing that some arrangements were unaccounted. The reciprocal
_ (n+k-2)!
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n—1 cuts e-gaps
So, an, i represents the number of words made with cuts « and {e1, ..., € }. Possibilities for az o are

QEQ,  EQQ,  QLOE.

Each word represents an specific order of cuts and e—gaps.



